
Three-Layered Mediator Architecture Based on DHT �

Raimund K. Ege, Li Yang, Qasem Kharma, Xudong Ni
Secure Software Architecture Laboratory

School of Computer Science
Florida International University

Miami, FL 33199, USA
�ege�lyang03�qkhar002�xni001�@cs.fiu.edu

Abstract

The interchange of data between client and heteroge-
neous sources requires an efficient and dynamic approach
to mediation. Our framework features three layers of
mediators: presence, integration, and homogenization. On
arrival of a request for data exchange, a session initiation
server forks to the mediator group to elect one mediator
as global presence mediator that is responsible for data
caching and service provision. Using Distributed Hash
Table (DHT), the presence mediator dispatches the data
stream request to other mediators and tracks down to the
source, which is then integrated and connected to the client
in a user-relevant way. Our mediation process is adaptive
and dynamic upon the user request and takes QoS factors
into consideration.

Keywords: mediator, layered mediator, middleware,
software architecture, XML, integration

1. Introduction

Modern information systems use inherently complex
data. The data is multi media, i.e. it is delivered as a
continuous stream from a multitude of sources. Multime-
dia data requires special attention to throughput, timeliness,
and other quality of service factors. Our approach to en-
abling high quality access is to build a layered framework of
mediators.The lower-layer mediators reside on top of actual
data sources, and maps the data source schemas to XML
schema. The middle layer resolves the schema differences
between the user needs and the source availability by pro-
viding a logical schema of information to application. The
upper layer makes the data source seem ever-present to the

�This material is based upon work supported by the National Science
Foundation under Grant No. HRD-0317692.

user and communicates directly with the user and makes
the multimedia streams available in the context of a web
service.

Mediators are typically employed in a situation where
the client data model does not coincide with the data model
of the potential data sources. The mediator provides a map-
ping of complex models to enable interoperability between
client and source(s). Many mediator systems have been
proposed for access to heterogeneous databases to serve
a variety of client types. A standard mediator language
[6] proposal requires support for complex types and semi-
structured data; abstract types with methods; the exchange
of rules that allow the communication of knowledge be-
tween the mediator and source as well as the mediator and
the client; and the exchange of metadata.

Also relevant to our research are main-memory database
systems and constraints. A main-memory database system
presents an in-memory set of data to a client and hides the
complexities of secondary storage access [9]. Constraints
allow the specification of facts that have to be considered
in the context of many others. Constraint satisfaction is
the process of considering all constraints to arrive at a state
where all constraints are satisfied. Constraints have been
used to support an architecture for user interfaces [5, 8], but
also in mediator system [1] where they provide a more flex-
ible and dynamic type mapping between source and client
data model.

The new contributions of this research are the follows:
providing XML based homogeneous interface and data in-
tegration among heterogeneous data sources in mediator ar-
chitecture, implementing SIP protocol to support user mo-
bility in mediator architecture, and using DHT to provide
distributed data lookup in mediator middleware.

The remainder of the paper is organized as follows: Sec-
tion 2 discuses our three-layer architecture. Section 3 ex-
plains the mediator components. Finally, Section 4 de-
scribes the communication between mediators using SIP
and DHT.

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

Cop
y R

igh
ts

2. Three layer architecture

The proposed three-layer mediator architecture is to han-
dle requests from a client which can be any computing unit.
These mediators will play intermediate roles between the
client and the data sources, and these mediators help the
client to establish streams to and from data sources.

The framework features three layers: it differentiates
among homogenization / connector, integration and pres-
ence mediators. The homogenization, also called connec-
tors, mediators connect to actual data sources; integration
mediators collect data from various sources into a coherent
logical schema; the top-level presence mediators are meant
to enable caching and buffering capabilities. The top layer
contains mediators whose task is to make the data source
seem ever-present to the client. These ”presence” medi-
ators are located using the Session Initiation Server (SIS)
which is a Session Initiation Protocol [13] like server and
subsequently retrieve and cache the data stream needed by
the client. For every request, one of the presence mediator
will be elected to be the Global Mediator which communi-
cates directly with the client. The middle layer contains the
”integration” mediators. Their task is to resolve the schema
differences between the client needs and the source avail-
ability. The bottom layer contains the ”homogenization”
mediators - connectors. Their task is to make a specific
feed source available to the middle layer of integration me-
diators. Basic mapping of data representation and bit level
compatibilities are handled here.

2.1. Presence

Our mediators will transfer and negotiate on four kinds
of information: the schema of data/information stream, the
operation specification, the quality of service information
specified from user API, and the context information de-
tected by the system. The request could be classified as
those four kinds of data, and user perceived quality has to
be mapped onto QoS parameters that will be supported by
the different layers.

Because our system handles multimedia objects, it re-
quires the integration of various services for multimedia ob-
ject creation, storage, access, transfer and presentation [4].
In our system, we allow user to set or modify his require-
ments in the request.

Quality of Service management is essential to efficiently
access pertinent information at the required level of quality.
This function intends to meet the level of quality required by
user. In a distributed multimedia system, it is necessary to
take both users requirements and Quality of Service (QoS)
provided by the system into consideration. System-level
QoS factors may include: delay needed to transfer objects,
the quality of information provided, e.g. image resolution
and colors, as well as financial costs attached to document

delivery such as the costs charged by a library to obtain a
copy of a journal article.

The context information detected by the system is
important for QoS Management, since resources are
scarce on mobile devices and the availability of re-
sources may vary significantly and unpredictably during
the runtime of an application. In the absence of re-
source guarantees, applications adapt themselves to the
prevailing operating conditions. For example, if com-
munication bandwidth is scarce, a doctor information
application on a mobile computer or PDA, that receives
data via some wireless link, might display text and
low-resolution pictures, instead of video clips. The follow-
ing is the example for XML schema of request from user.

</xs:element>
 <xs:element name = "bandwidth"/>
<xs:element name = "system"/>
</xs:element>
 </xs:complexType>
 </xs:sequence>
 <xs:element name = "delay"/>
 <xs:element name = "color"/>
 <xs:sequence>

 <xs:complexType>
<xs:element name = "QoS">
<xs:element name = "Action"/>

 <xs:element name = "age"/>
 <xs:element name = "name"/>
 <xs:element name = "patient_id"/>

 </xs:element>
 </xs:complexType>
 </xs:sequence>

 <xs:sequence>
 <xs:complexType>
 <xs:element name = "request">
<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">

This example shows the XML schema that governs a typ-
ical request for patient data that might be issued from
a handheld device as a doctor attends to a patient in an
ambulatory environment. The requests QoS specification
must be translated to an application QoS specification.
For instance, the ”QoS” and ”bandwidth” fields are user
requirements which will be mapped into parameters that
can be interpreted by the system.

2.2. Integration

The global mediator receives the client request based on
an XML schema and translates it into schemas supported
by the underlying layers. The data integration system refor-
mulates the client request into a set of query over the data
sources and then executes them. Then, each source needs to
be mapped to relevant parts of this unified schema. The sin-
gle schema of the integrated system is called the ”mediated

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

Cop
y R

igh
ts

schema”. Having a mediated schema facilitates the formu-
lation of queries to the integrated system. The users simply
pose queries in terms of the global mediated schema, rather
than directly in terms of the source schema. The system
then intelligently processes the query, reading data across
the network and responding to data source sizes, network
conditions, and other factors. The functionality is similar
with element patterns on matching data among the different
sources.

The Global Mediator dispatches the user query to other
mediators which coordinate with the global mediator in or-
der to serve the request. These mediators are also called
mediator-composers: they set up a contract between the
performances of multiple data sources in order to satisfy
the users QoS requirements; they are in charge of finding
a system configuration that supports the requested QoS and
can be considered as similar to resource allocation in dis-
tributed systems. QoS negotiation leads to a commitment
from the overall components concerning the quality level
that will be offered. Different types of commitment can
be provided: guaranteed, best-effort or stochastic. In the
first case, the different components must reserve the cor-
responding resources. The communication between medi-
ators is 2-way and request/response based. The request is
short, and the response is in terms of delivering a stream of
data in XML form. Every mediator is currently being imple-
mented as a Java Servlet that runs on an application server
(e.g. Tomcat). It provides the following methods (from the
HttpServlet class documentation):
- doGet: to request data, i.e. an instance of an XML schema,
from the mediator.
- doPut: to send data, i.e. an instance of an XML schema,
to the mediator.
- init and destroy: to manage resources that are held for the
life of the servlet.
- getServletInfo: to provide information about a servlet and
to return its XML schema.

The communication among mediators is based on http
methods: get and put to accomplish the two-way communi-
cation, and query to query the XML schema from Schema
DB. Each mediator can run servlets independently, without
affecting the other’s function. As an example, consider Fig-
ure 1: when a client intends to query data from ���, the
get method is employed to get data from the Global Me-
diator. After the translation of the query information, the
Global Mediator dispatches the queries to lower level medi-
ators and obtain data form base Database by get method.
Then, the data is integrated and sent to the Global Me-
diator. What returned to the client is an XML stream of
data that contains any other kind of data including mul-
timedia. On the other hand, when a client intends to up-
date the data in ���, the client uses the put method to in-
form Global Mediator of update action. The Global Me-
diator sends the update command to lower level mediators

which use put methods to update the data information in
the databases. Also, Global Mediator can query the current
schema form the Schema DB via the getServletInfo method.

PA Mapping
DB3 M_connector

PA Mapping

DB2 M_connector

Mediator_composerMediator_composer

GM(Global Mediator)

93

PM(Presence Mediator)
1

2 Server
like
SIP

Incoming Request

(Personal

Homogenization

Presence

Integration
44

588 5

7676

Information)

DBn (Prescription......
Information)

DB1

Figure 1: Three-Layer Architecture

2.3. Homogenization

The homogenization layer, which is represented by
mediator-connectors, converts physical data, such as data
from SQL queries, ftp gets, http gets, into a stream of XML
data. XML is clearly todays standard of choice for the
representation and exchange of structured data, particularly
where that data must be read and interpreted by different
applications written by different groups. XML and XML
Schema provide a convenient, potentially human readable,
easily extensible representation standard. Therefore, we opt
to use XML in communication among the mediators. Data
from relational databases can be mapped to XML by table-
based mapping or an object-relational (object-based) map-
ping. There is an obvious table-based mapping between
the XML document and relational data. The advantage of
this mapping is its simplicity, and it is easy to write code
based on this mapping; code which is fast, scales well, and
is quite useful for certain applications, such as transferring
data between databases one table at a time. The mapping
has several disadvantages; primarily, it only works with a
very small subset of XML documents. In addition, it does
not preserve physical structure (such as character and en-
tity references, CDATA sections, character encodings, or
the standalone declaration) or document information (such
as the document type or DTD), comments, or processing in-
structions. Because table-based mappings only work with a
limited subset of XML documents, some middleware tools,
most XML-enabled relational databases, and most XML-
enabled object servers use a more sophisticated mapping,

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

Cop
y R

igh
ts

called an object-relational mapping. This models the XML
document as a tree of objects that are specific to the data in
the document, then maps these objects to the database. The
XML mapping and conversion tool, which lets the user to
interactively create a data transformation, will allow user to
map and integrate some types of data to XML data in a user-
friendly command-line interface, used in XMLconversion
product. Such XML conversion gives users a simple, con-
sistent approach to creating XML from other types of data
or updating other types of data from XML input. Users can
use it across multiple databases. XML schema is an emerg-
ing standard from W3C. XML schema is a language for
defining the structure of XML document instances that be-
long to a specific document type. XML schema can be seen
as replacing the XML DTD syntax. XML schema provides
strong data typing, modularization and reuse mechanisms
not available in XML DTDs. Most XML schema languages
can be mapped to databases with an object-relational map-
ping. The exact mappings depend on the language. DDML,
DCD, and XML Data Reduced schemas can be mapped in a
manner almost identical to DTDs. The mappings for W3C
Schemas, Relax, TREX, and SOX appear to be somewhat
more complex. In the case of W3C Schemas, a complete
mapping to object schemas and then to database schemas is
available.

3. Mediator Model

Our architecture differentiates between two kinds of me-
diators: mediator-composer and mediator-connector. The
client first connects to a special kind of mediator-Composer
called Global Mediator as described in the next section. The
hierarchy of the mediators is dynamically built based on
which mediator is elected to be the Global Mediator (Sec-
tion 4.1) and how the Distributed Hash Table (DHT) is built
(section 4.2). At the lowest level of the mediator hierar-
chy, mediator-connectors are located. Data sources can be
accessed through mediator-connectors only.

3.1. Mediator-Composer

Interoperation with the diversity of available sources re-
quires a variety of functions. The mediator group has to
accommodate multiple types of modules, and allow them to
coordinate as required. For instance, facilitators will search
for likely resources and ways to access them [18]. Query
processors will reformulate an initial query to enhance the
chance of obtaining relevant data [2, 19]. Text associated
with images can be processed to yield additional keys[10].
The QoS specification from client is taken into considera-
tion; finally, further integration makes the results relevant
to the client. The mediator-composers have the same inter-
faces and capabilities, so each one would deal not only with

client users (translation functionality occurring in presence
layer) but also with other mediators (integration function-
ality occurring in integration layer), providing or giving re-
sponse. The elected Global mediator has the responsibility
of caching data and providing service.

In other words, mediator-composers have the ability to
construct XML schemas for requests. When mediator-
composer receives a request, it will either simplify and for-
ward the request or just forward the request. If the mediator-
composer has some knowledge about the request, it simpli-
fies the request according to its knowledge. For instance, if
a mediator-composer receives a request to retrieve ”name”
and this mediator knows that the ”name” is composed of
” first-name” and ”last-name”, it replaces the ”name” with
”first-name” and ”last-name”. Besides, it may add some
QoS parameters. Then, it will forward the request to the
next mediator. When it receive the response, it will inte-
grate the ”first-name” and ”last-name” into ”name”

3.2. Mediator-Connector

Selection and filtering of data is a function which is best
performed at the source since one does not want to ship
large amounts of unneeded data to the client or the medi-
ators [17]. Making data accessible may require a wrap-
per/connector at or near the sources, so the access can be
performed using standard interfaces. In our architecture,
each mediator-connector will be directly associated with a
physical source, and is to provide transparent translations
from different data formats to XML format, and to pro-
vide transparent communications protocol interoperability
between components and persistent data storage.

There are two differences between mediator-connectors
and mediator-composers. First, mediator- connectors do not
change the XML for the request. Mediator-connectors an-
alyze and provide the request data from the data source to
the mediator-composer which request this data. The sec-
ond difference is that mediator-connectors are responsible
to retrieve data from data source, reformat the data to XML
format, create a small chunk of the data to be submitted, and
format the stream of data to be submitted.

3.3. Mediator Connections

Every mediator has a composer stream or connector
stream. The stream is a Java interface that has at least a read
or write method. Mediators can communicate via streams,
one mediator writes to a stream, the other reads from the
same stream. The stream of every mediator-composer rep-
resents the abstraction of mediator and the stream of every
mediator-connector represents the abstraction of resources.
The stream is semi-structured and can be instantiated into
events or messages, a kind of XML object. And, the XML

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

Cop
y R

igh
ts

object can be passed among mediators by reading or writ-
ing stream instance. A mediator searches its DHT to deter-
mine the next destination of a request. Searching the DHT
yields the IP address of the next mediator, so the media-
tor can create a port to communicate with the destination
mediator using transport protocol such as UDP. Then, the
senders writer submits stream of messages, and the destina-
tions reader receive the stream messages. When a mediator-
connector receives a request, it will send each data on sep-
arate port; for instance, if the request contains images and
audio, the mediator-connector creates a port to submit the
images and another one to submit the audio file.

4. Session Initiation

Our goal is to arrive at a simple and unifying media-
tor concept that captures all three layers. The relationship
among mediators in the same layer is peer-to-peer, and once
one mediator receives a request from a client, the mediator
sends an INVITE message to a mediator through a session
initiation server (SIS). After the SIS, which is a SIP-like
server, provides an ID of a mediator to the client who sent a
request, this mediator will become the global mediator for
the incoming request and take the responsibility of a pres-
ence mediator (cache data, integrate data, return service).

4.1. Global Mediator Election

The global mediator is elected dynamically upon the re-
quest from the client. A user (client) sends a request to
session initiation server via a INVITE command to know
which Mediator-Composer can serve as its global mediator.
SIS then broadcasts to the group of the available Mediator-
Composers via a FORK command to all registered media-
tors. A register mediator is a mediator server that is avail-
able and has some knowledge about some data sources. In
other words, when a mediator is started, it sends a registra-
tion message which includes the IP address, and name or ID
to SIS. The first mediator that responds (RESPOND) to the
forked message will be the global mediator which also plays
the role of presence mediator for that request and to serve
the incoming request. Any response to the forked message
after RESPOND the IP to the client will be ignored. There-
fore, the global mediator is elected and the architecture is
dynamically formed. Although SIS seems to be a central
failure point, it is not a big issue since any SIP server can
play its role. Using a SIP-like architecture is to support user
mobility and real-time multimedia streaming[7].

4.2. Lookup Algorithm

After electing the global mediator which is responsible
for receiving and responding for the user request, the global

mediator will coordinate with other mediator(s), either com-
poser(s) and/or connector(s), in order to serve the request.
This coordination is similar to peer-to-peer (P2P) system in
which nodes share distributed files. The most difficult chal-
lenge in P2P is how data can be found in a large, scalable
P2P system without having central failure server [3].

The most recent lookup algorithms for P2P system are
based on distributed hash table (DHT). In general, these al-
gorithms routing complexity is ������� where N is the
number of nodes in the system. [3] classifies DHT algo-
rithms into three categories:

Skiplist-like routing algorithm: Chord algorithm [16] is
an example of skiplist-like routing algorithm. In Chord,
every node in the system maintains information about
�������. The hash function assigns m-bit identification
key using SHA-1 as a base function to map the IP address.
The nodes in the system are arranged in an identifier circle,
Each node on this circle maintains a finger table contain-
ing the IP addresses of � � ���� successors where � is the
node ID and � � � � �. In other words, this finger table
maintains the IP addresses of halfway, quarter-of-the-way,
eighth-of-the-way, and so forth. As a result this algorithm
can find the required node in �������.

Tree-like algorithms: Tree-like algorithms, such as Pas-
try [15], Tapestry [11], and Kademlia [12], use structured
prefix to maintain the location of nodes. Each node main-
tains IP addresses of some other nodes in its leaf.

Routing in Multiple dimensions: CAN[14] is an exam-
ple of routing in multiple dimensions. Each node in CAN
maintains chunk of DHT called zone, These zones are dis-
tributed in d-dimension. In addition to storing a chunk of
DHT in the zone, each zone maintains information about its
neighbors in the d-dimension. The routing time complexity
for this algorithm is ��������.

The reader can observe that these algorithms are similar
in the following aspects:
- Each node maintains information about its neighbors only,
not all the nodes in the system.
- They are using a DHT instead of maintaining of central
server.
- Their time complexity for routing is O(log N) for most of
them. However, these algorithms differ in many aspects, but
the most important different is how each algorithm defines
”neighbor”.

In general, each node should maintain minimum knowl-
edge about other nodes in the systems. A hash function, i.e.
SHA-1, maps keys onto values where values could be file
names, IP addresses, or any naming to be lookup. In our
case, we are interested in mapping the XML schema tags
and we will use Chord algorithm [16].

4.3. Putting it all together:

The scenario how the system will work is as following:

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

Cop
y R

igh
ts

� Adding a new mediator:
- send a REGISTER message to SIS to announce its
availability
- build its DHT, maintain some knowledge about its
neighbors, and let its neighbors know about its services

� When a client wants a service
- send a REGISTER message to SIS
- send an INVITE message to SIS
- SIS forks the INVITE message
- SIS returns the IP address of the first mediator re-
sponding to the INVITE message
- this mediator will be the global mediator and the
client establish a direct connection with it
- the client send the request to the global mediator

� When a global mediator receives a request
- build the XML schema for the request
- lookup the IP address(es) for coordinating media-
tor(s) which can handle the XML schema data or apart
of it (tags). Coordinating mediators either is the neigh-
bor of global mediator or contains the requested XML
schema data.
- establish a connection with the coordinator(s)
- if the coordinator is a connector mediator, get data
- if the coordinator is a composer mediator, the coordi-
nator lookup data in similar manner (loop) with global
mediator does
- integrate collected data with every level
- return the response.

5. Summary

The interchange of data between client and heteroge-
neous sources requires an efficient and dynamic approach
to mediation. The framework described in this paper fea-
tures three layers of mediators: presence, integration, and
homogenization. On arrival of a request for data exchange,
a session initiation server forks to the mediator group to
elect one mediator as global presence mediator that is re-
sponsible for data caching and service provision. With the
help of the session initiation server, the presence mediator
dispatches the data stream request to other mediators and
tracks down to the source, which is then integrated and con-
nected to the client in a user-relevant way. The advantage
of our mediation process is its adaptive and dynamic na-
ture, not only may the user request change rapidly, but also
properties of delivery, such as QoS factors, are taken into
consideration.

References

[1] C. Altenschmidt, J. Biskup, J. Freitag, and B. Sprick.
Weakly constraining multimedia types based on a type em-

bedding ordering. In the 4th International Workshop on Mul-
timedia Information Systems, volume 1508, pages 121–129,
Berlin, 1998. Springer-Verlag.

[2] Y. Arens, C. Knblock, and W.-M. Shen. Query reformation
for dynamic information. 1985.

[3] H. Balakrishnan, M. F. Kaasoek, D. Karger, R. Morris, and
I. Stoica. Looking up data in P2P systems. Communication
of the ACM, 46(2), February 2003.

[4] Berra, P.B, G. F., R. Mehotra, and O. Sheng. Introduc-
tion multimedia information systems. IEEE Transactions
on Knowledge and Data Engineering, 5 No 4, August 1993.

[5] A. Borning. Graphically defining new building blocks
in TingLab. Human-Computer Interaction, 2(4):269–295,
1986.

[6] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu.
A query language and optimization techniques for unstruc-
tured data. pages 505–516, 1996.

[7] H. S. E. Wedlund. Mobility support using SIP. In Second
ACM/IEEE International Conference on Wireless and Mo-
bile Multimedia(WoWMoM’99), Seattle, Washington, Au-
gust 1999.

[8] R. K. Ege. Defining constraint-based user interfaces. IEEE
Database Engineering, Special Issue on Whatever Hap-
pened to Semantic Modeling, 11(2), 1988.

[9] R. K. Ege. Reading large volumes of java objects from
database. In Proceedings of Technology of Object-Oriented
Languages and Systems(TOOLS USA) Conference, Santa
Barbara, CA, August 2000. IEEE Computer Society Press.

[10] E. J. Gugliemo and N. C.Rowe. Natrual language retrieval
of images based on descriptive captions, May 2000.

[11] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao. Dis-
tributed object location in a dynamic network. In Proceed-
ings of the 14th ACM Symposium on Parallel Algorithms and
Architectures(SPAA), 1997.

[12] P. Maymounkov, Mazieres, and D. Kademlia. A peer-to-
peer information system based on the XOR metric. In Pro-
ceedings of the 1st International Workshop on Peer-to-Peer
Systems, Cambridge, MA, March 2002. Springer-Verlag.

[13] M.Handley, ACIRI, and H. Schulzrinne. Technical report.
[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. a scalable content-addressable network. In Pro-
ceedings of ACM SIGCOMM, San Diego, CA, 2000.

[15] A. Rowstron, Druschel, and P.Pastry. Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Proceedings of the 18th IFIP/ACM Int’l Conf. on
Distributed Systems Platforms, pages 329–350, Heidelberg,
Germany, November 2001.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of ACM SIG-
COMM, San Diego, August 2001.

[17] G. Wiederhold. Mediation to deal with heterogeneous data
sources. Jan. 1999.

[18] G. Wiederhold and M. Genesereth. The conceptual basis fo
mediation services. IEEE Expert, 12 No. 5:38–47, Sep.-Oct.
1997.

[19] W.W.Chu and Q.Chen. A structured approach for coopera-
tive query answering. IEEE Transactions on Knowledge and
Data Engineering, 6 No. 5, October 1994.

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

Cop
y R

igh
ts

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

